
PhyreEngine™ Terrain
Jason G Doig

SCEE R&D



© Copyright 2008 Sony Computer Entertainment

Terrain

Very common requirement

Current solutions not so great

There are better ways...



© Copyright 2008 Sony Computer Entertainment

Agenda

Choosing the technology

Designing the art pipeline

Implementation and performance



© Copyright 2008 Sony Computer Entertainment

Goals

Represent a variety of terrain types

Vertical surfaces and overhangs

Caves and tunnels

Surfaces with genus > 0



© Copyright 2008 Sony Computer Entertainment

More Goals

Scalable - terrains are big

Needs to be streamable

Need view dependent LOD

Unique geometry and texture

Must be easy to edit



© Copyright 2008 Sony Computer Entertainment

Geometry

Heightfields

Not good for complex topology, even 
with displacements

Meshes

Too much data, unwieldy at a large 
scale



© Copyright 2008 Sony Computer Entertainment

High order surfaces

Smooth surface is unsuitable

Terrain is not often smooth

Probably need a displacement

However LOD is good - subdivision

Still need good authoring tools



© Copyright 2008 Sony Computer Entertainment

Subdivision Surfaces

Mesh based authoring

No restrictions for topology

Requires displacements for detail

LOD fairly easy

Especially if we subdivide the terrain



© Copyright 2008 Sony Computer Entertainment

Example



© Copyright 2008 Sony Computer Entertainment

Terrain Patches
Split terrain into patches

Each patch store:

Low res mesh - keep in memory

Full topology, UV coords, etc.

High res positions only - stream

No topology or UVs



© Copyright 2008 Sony Computer Entertainment

Authoring

Build a terrain out of low-res meshes

Subdivide into a smooth hi-res mesh

Sculpt the hi-res detail

No topology changes to hi-res!

Apply textures - including normal map



© Copyright 2008 Sony Computer Entertainment

Unanswered Questions
How to put meshes together

Need to handle subdivision across 
meshes

How flexible will mesh layout be?

Runtime implementation

Texturing and sculpting



© Copyright 2008 Sony Computer Entertainment

Mesh Layout

On a grid!

Terrain tends to be 2D on large scale

Simplifies LOD greatly

Downsides

May restrict alignment of features



© Copyright 2008 Sony Computer Entertainment

Level Editor
Custom tool for laying down patches

Handle palette of low-res shapes

Place low-res mesh instances into level

Create smooth subdivisions

Export/import sections for sculpting 
and texturing



© Copyright 2008 Sony Computer Entertainment

Sculpting
Many packages can sculpt polygons

We just need to import/export

Want to ignore mesh boundaries

Sculpt continuously across edge

No geometric restrictions

Allow arbitrary selection of polys



© Copyright 2008 Sony Computer Entertainment

Texturing

Want unique texturing

Need to stream

Could use one giant texture

i.e. virtual-texture techniques

Discrete meshes on a grid allows a 
simpler solution - texture per mesh.



© Copyright 2008 Sony Computer Entertainment

Editing texture

Need to edit discrete textures 
seamlessly - treat as continuous

Need to paint multiple channels

colour, bump, material parameters...

Tools exist, but didn’t fit our needs



© Copyright 2008 Sony Computer Entertainment

Terrain Paint

Allows painting onto a 3D mesh

Allows painting across multiple meshes

Allows painting of multiple channels

Directly shows displacement maps



© Copyright 2008 Sony Computer Entertainment

Terrain Paint Demo



© Copyright 2008 Sony Computer Entertainment

Level Editor

Exports whole meshes for texture 
editing

Doesn’t make sense to only partially 
edit a texture



© Copyright 2008 Sony Computer Entertainment

Diagram of workflow
Modelling PackageLow-res Mesh

Level Editor

Low-res Level Data

Sculpting Package Texturing Package

High-res Level Data
Subdivide



© Copyright 2008 Sony Computer Entertainment

Texture Compression
Lots of texture data

72 bits per texel

9MB per patch.

DXT gives a fixed reduction

But isn’t always appropriate

Flexible compression would be good



© Copyright 2008 Sony Computer Entertainment

Compression Schemes

DXT is not ideal

But good for runtime!

Tricky to further compress DXT data

Good ratios require lossy compression



© Copyright 2008 Sony Computer Entertainment

Compression
Compress single channels

Optional colour space conversation

Can downsample

Compress in blocks

Exploit small-scale structure

Good for re-compressing to DXT



© Copyright 2008 Sony Computer Entertainment

Block Compression
DCT based (like JPEG)

Transform block into cosine terms

Quantize terms

This is the lossy step!

Adjustable for different channels / 
ratios



© Copyright 2008 Sony Computer Entertainment

Stream Compression
Order block into 1D stream

Zig-zag

Run-length encode any zeros

Quantization should discard a lot

Terminate if no non-zero values

Standard data compression on result



© Copyright 2008 Sony Computer Entertainment

Runtime

Decode blocks of three channels

Upsample pixels and CSC if necessary

Optionally re-encode as DXT



© Copyright 2008 Sony Computer Entertainment

DXT Compression
Find a palette for each block

Not completely trivial

Some entries are interpolated

Choice of interpolation

Match texels to palette entries

Simple distance - no dithering...



© Copyright 2008 Sony Computer Entertainment

DXT Implementation

Attempt 1 - port of Squish

Lots of loops and conditionals

Didn’t work well on SPU

Attempt 2 - naive min/max algorithm

Looked very poor



© Copyright 2008 Sony Computer Entertainment

DXT Implementation
Attempt 3 - principal axis

More or less what Squish does

Fairly maths heavy

Optimisations

AOS -> SOA

Move from float to integer (uchar16)



© Copyright 2008 Sony Computer Entertainment

Performance
Naive min/max

120 cycles/block (7.5 cycles/pixel)

Full float implementation

530 cycles/block (33 cycles/pixel)

Optimised principal axis code

325 cycles/block (20 cycles/pixel)



© Copyright 2008 Sony Computer Entertainment

Compression Ratio

Currently we’re aiming at 10:1

Slightly better than DXT for colour

But better quality if we don’t re-DXT

Much better than uncompressed

Good for normals and material info



© Copyright 2008 Sony Computer Entertainment

Runtime

Low-res meshes always loaded

No current need for reduced LOD

Hi-res content streamed

LOD chosen and streamed per-block

Geometry can morph between levels



© Copyright 2008 Sony Computer Entertainment

LOD levels
LOD level calculated as Chebyshev 
distance to camera

Highest level in nearest 4 blocks

Falls off to lowest level

No more than 1 level difference to 
adjacent blocks

Required for stitching and morphing



© Copyright 2008 Sony Computer Entertainment

LOD Diagram

4 4 4 4 4 4 4 4 5 5 5
4 3 3 3 3 3 3 4 5 5 5
4 3 2 2 2 2 3 4 5 5 5
4 3 2 1 1 2 3 4 5 5 5
4 3 2 1 1 2 3 4 5 5 5
4 3 2 2 2 2 3 4 5 5 5
4 3 3 3 3 3 3 4 5 5 5
4 4 4 4 4 4 4 4 5 5 5
5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5
5 5 5 5 5 5 5 5 5 5 5



© Copyright 2008 Sony Computer Entertainment

Geometry Processing

Limited memory

Fast CPU

Subdivided dynamically every frame

No geometry caching

Continuous LOD (geo-morphing)



© Copyright 2008 Sony Computer Entertainment

Stitching and Morphing

Patches can morph between levels

Adjacent patches can be 1 base-level 
different

Edges clamped to LOD of adjacent patch

Clamping done as a fix-up pass after 
subdivision



© Copyright 2008 Sony Computer Entertainment

Geometry Processing
Geometry processed in parallel

Terrain patch geometry split into 
smaller chunks

Need to fit into a buffer on SPU

Custom routines for each LOD

Faster than a generic routine



© Copyright 2008 Sony Computer Entertainment

Basic Performance
General Scene complexity

Usually around 20 visible patches

Generates about 70,000 triangles

More if re-rendering for shadows

Terrain tessellation is 50% of 1 SPU

Decompression scalable on remainder



© Copyright 2008 Sony Computer Entertainment

Geometry Performance

Single SPU

Lowest LOD around 11 M verts/s

Highest LOD around 35 M verts/s

Note - these are *after* culling

Vertices generated actually higher



© Copyright 2008 Sony Computer Entertainment

Streaming
Typically needs 1.2MB/s

Peaks at 4MB/s in short bursts

Quite comfortable for HDD

Texture Decompression Speed

16 - 70 million texels/s non-DXT

35 - 40 million texels/s DXT



© Copyright 2008 Sony Computer Entertainment

More Performance

Scales linearly with more cores

Until we run of out of bandwidth

Or the GPU bottlenecks

Typically these don’t happen for us



© Copyright 2008 Sony Computer Entertainment

Summary
Displaced subdivision surfaces are cool

Flexible geometry

Good LOD

Consider alternative compression

Re-compress to runtime format

Performs well on modern platforms



© Copyright 2008 Sony Computer Entertainment

Questions?


